On Families of Wigner Functions for N-Level Quantum Systems
نویسندگان
چکیده
A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence an arbitrary N-level quantum system is proposed. The based on reformulation of Stratonovich–Weyl in form algebraic “master equations” spectrum kernel. later implements a map between operators Hilbert space and functions phase identified by complex flag manifold. non-uniqueness solutions to master equations leads diversity among distributions. It shown that possible kernels N=(2j+1)-level system, one can always identify representative realizes so-called SU(2)-symmetric spin-j symbol correspondence. exemplified considering single qubit qutrit.
منابع مشابه
Wigner Functions for Arbitrary Quantum Systems.
The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical sys...
متن کاملConstraints on relaxation rates for N-level quantum systems
S. G. Schirmer* and A. I. Solomon Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom Department of Engineering, Division F, Control Group, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom Department of Physics and Astronomy, The Open University, Milton Keynes, MK7 6AA, United Kingdom L...
متن کاملWigner Functions and Separability for Finite Systems
Abstract A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension pn where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the con...
متن کاملOn Simulating Liouvillian Flow From Quantum Mechanics Via Wigner Functions
The interconnection between quantum mechanics and probabilistic classical mechanics for a free relativistic particle is derived in terms of Wigner functions (WF) for both Dirac and Klein-Gordon (K-G) equations. Construction of WF is achieved by first defining a bilocal 4-current and then taking its Fourier transform w.r.t. the relative 4-coordinate. The K-G and Proca cases also lend themselves ...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2021
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym13061013